# Оценочные материалы при формировании рабочих программ дисциплин (модулей)

**Направление подготовки / специальность:** Прикладная математика и информатика **Профиль / специализация:** Математическое моделирование и вычислительная математика

Дисциплина: Теория вероятностей и математическая статистика

Формируемые компетенции: ОПК-1

1. Описание показателей, критериев и шкал оценивания компетенций.

Показатели и критерии оценивания компетенций

| Объект<br>оценки | Уровни сформированности компетенций                       | Критерий оценивания<br>результатов обучения        |
|------------------|-----------------------------------------------------------|----------------------------------------------------|
| Обучающийся      | Низкий уровень<br>Пороговый уровень<br>Повышенный уровень | Уровень результатов обучения<br>не ниже порогового |

Шкалы оценивания компетенций при сдаче экзамена или зачета с оценкой

| Достигнутый уровень результата обучения | Характеристика уровня сформированности<br>компетенций                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Шкала оценивания<br>Экзамен или зачет с<br>оценкой |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Низкий<br>уровень                       | Обучающийся: -обнаружил пробелы в знаниях основного учебно-программного материала; -допустил принципиальные ошибки в выполнении заданий, предусмотренных программой; -не может продолжить обучение или приступить к профессиональной деятельности по окончании программы без дополнительных занятий по соответствующей дисциплине.                                                                                                                                                                      | Неудовлетворительно                                |
| Пороговый<br>уровень                    | Обучающийся: -обнаружил знание основного учебно-программного материала в объёме, необходимом для дальнейшей учебной и предстоящей профессиональной деятельности; -справляется с выполнением заданий, предусмотренных программой; -знаком с основной литературой, рекомендованной рабочей программой дисциплины; -допустил неточности в ответе на вопросы и при выполнении заданий по учебно-программному материалу, но обладает необходимыми знаниями для их устранения под руководством преподавателя. | Удовлетворительно                                  |
| Повышенный<br>уровень                   | Обучающийся: - обнаружил полное знание учебно-программного материала; -успешно выполнил задания, предусмотренные программой; -усвоил основную литературу, рекомендованную рабочей программой дисциплины; -показал систематический характер знаний учебно-программного материала; -способен к самостоятельному пополнению знаний по учебно-программному материалу и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности                                                          | Хорошо                                             |

| Высокий | Обучающийся:                                                     | Отлично |
|---------|------------------------------------------------------------------|---------|
| уровень | -обнаружил всесторонние, систематические и глубокие знания       |         |
|         | учебно-программного материала;                                   |         |
|         | -умеет свободно выполнять задания, предусмотренные программой;   |         |
|         | -ознакомился с дополнительной литературой;                       |         |
|         | -усвоил взаимосвязь основных понятий дисциплин и их значение для |         |
|         | приобретения профессии;                                          |         |
|         | -проявил творческие способности в понимании учебно- программного |         |
|         | материала.                                                       |         |
|         |                                                                  |         |

Описание шкал оценивания Компетенции обучающегося оценивается следующим образом:

| Планируемый<br>уровень  | Содержание шкалы оценивания<br>достигнутого уровня результата обучения                                                                                                  |                                                                                                                                                                             |                                                                                                                                                                                                                      |                                                                                                                                                                                                             |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| результатов<br>освоения | Неудовлетворительно<br>Не зачтено                                                                                                                                       | Удовлетворительно<br>Зачтено                                                                                                                                                | Хорошо<br>Зачтено                                                                                                                                                                                                    | Отлично<br>Зачтено                                                                                                                                                                                          |  |
| Знать                   | Неспособность обучающегося самостоятельно продемонстрировать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения. | Обучающийся способен самостоятельно продемонстрировать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения.           | Обучающийся демонстрирует способность к самостоятельному применению знаний при решении заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем. | Обучающийся демонстрирует способность к самостоятельному применению знаний в выборе способа решения неизвестных или нестандартных заданий и при консультативной поддержке в части междисциплинарных связей. |  |
| Уметь                   | Отсутствие у обучающегося самостоятельности в применении умений по использованию методов освоения учебной дисциплины.                                                   | Обучающийся<br>демонстрирует<br>самостоятельность в<br>применении умений<br>решения учебных<br>заданий в полном<br>соответствии с<br>образцом,<br>данным<br>преподавателем. | Обучающийся продемонстрирует самостоятельное применение умений решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.                 | Обучающийся демонстрирует самостоятельное применение умений решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.                   |  |
| Владеть                 | Неспособность самостоятельно проявить навык решения поставленной задачи по стандартному образцу повторно.                                                               | Обучающийся демонстрирует самостоятельность в применении навыка по заданиям, решение которых было показано преподавателем                                                   | Обучающийся демонстрирует самостоятельное применение навыка решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.                    | Обучающийся демонстрирует самостоятельное применение навыка решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей                    |  |

## 2. Перечень вопросов и задач к экзаменам, зачетам, курсовому проектированию, лабораторным занятиям. Образец экзаменационного билета

Примерный перечень вопросов к экзамену

Компетенция ОПК-1:

- 1. Теория вероятностей. Аксиоматика теории вероятностей. Комбинаторно-вероятностные схемы. Биномиальная и полиномиальная схемы.
- 2. Элементы комбинаторики.
- 3. Случайные события. Классическая вероятность. Статистическая вероятность. Геометрическая вероятность.
- 4. Теоремы сложения и умножения вероятностей случайных событий. Условная вероятность случайного события.
- 5. Гипотезы Байеса. Формула полной вероятности.
- 6. Схема Бернулли. Формула Бернулли.
- 7. Асимптотическая формула Пуассона. Локальная и интегральная теоремы Лапласа.
- 8. Случайные величины: определение, классификация, законы распределения дискретной случайной величины.
- 9. Операции над независимыми дискретными случайными величинами.
- 10. Числовые характеристики дискретных случайных величин и их свойства.
- 11. Случайные величины и их распределения: непрерывная случайная величина. Одномерные распределения вероятностей. Интегральная и дифференциальная функции.
- 12. Числовые характеристики непрерывных случайных величин и их свойства.
- 13. Основные законы распределения непрерывной случайной величины.
- 14. Случайные векторы и их распределения. Многомерное нормальные распределение.
- 15. Функции от случайных величин. Замена переменных.
- 16. Сходимость по вероятности и предельные теоремы. Виды сходимости последовательностей случайных величин.
- 17. Характеристические функции и их свойства. Закон больших чисел.
- 18. Локальная предельная теорема для решетчатых случайных величин. Различные формы центральной предельной теоремы.
- 19. Математическая статистика. Статистические методы. Статистическое описание.
- 20. Методы получения оценок. Генеральная и выборочная совокупности.
- 21. Определение и вычисление статистик случайной выборки. Некоторые статистики.
- 22. Выборочные распределения и критерии для многомерных распределений.
- 23. Выборочный метод. Ошибки выборки.
- 24. Типовые распределения вероятностей. Оценки параметров.
- 25. Точечные оценки. Точечное и доверительное оценивание параметров распределений.
- 26. Доверительные интервалы. Интервальные оценки.
- 27. Элементы корреляционного анализа. Корреляционные функции и спектральные плотности.
- 28. Линейная корреляция.
- 29. Метод наименьших квадратов.
- 30. Прямые регрессии.
- 31. Проверка статистических гипотез. Последовательный анализ. Непараметрические методы математической статистики.
- 32. Критерии согласия.
- 33. Проверка гипотезы о значении параметров нормального распределения.
- 34. Проверка гипотезы о виде распределения.
- 35. Случайные процессы. Теория случайных процессов. Статистика и измерения случайного процесса.
- 36. Стационарные случайные процессы. Теорема о спектральном представлении.
- 37. Дискретные марковские процессы с непрерывным временем.
- 38. Дискретные цепи Маркова. Эргодическая теорема для дискретных цепей Маркова.
- 39. Пуассоновский процесс и его свойства.
- 40. Винеровский процесс и его свойства. Стохастический интеграл.
- 41. Основы теории массового обслуживания: одноканальная и многоканальная системы с ожиданием и отказами.
- 42. Непуассоновские потоки событий.

Примерные практические задачи (задания) и ситуации Компетенция ОПК-1:

1. Пусть производятся независимые испытания. Вероятность успеха в каждом испытании равна 1/5. Пусть наивероятнейшее число успехов равно 10. Сколько испытаний проведено?...

- 2. Пусть производятся независимые испытания. Вероятность успеха в каждом испытании равна 1/5. Тогда вероятность, что число успехов в пяти испытаниях будет не более одного, равна.
- 3. Для непрерывной случайной величины X известно:

$$F(x) = \begin{cases} 0, x \le 0, \\ cx^2, 0 < x \le 2, \\ 1, x > 2. \end{cases}$$

 $\square$  =P(A)P(B | A)

Найти: 1). c=?; 2). f(x); 3). P(-1 < x < 1).

|                                                                                          | Образец экзаменационного билета                                                                |                                                                     |  |  |  |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|
| Дальнев                                                                                  | восточный государственный университет путей соо                                                | общения                                                             |  |  |  |
| Кафедра (к902) Высшая математика 4 семестр, 2021-2022 учебный год                        | Экзаменационный билет № по дисциплине Теория вероятностей и математическая статистика 01.03.02 | «Утверждаю» Зав. кафедрой Виноградова П.В., д-р физ мат. наук, доце |  |  |  |
| 1. Элементы комбинаторики. (                                                             | L<br>ОПК-1)                                                                                    |                                                                     |  |  |  |
| •                                                                                        | ии параметров нормального распределения (ОПК-                                                  | 1)                                                                  |  |  |  |
|                                                                                          | етыре стандартные. Берут любые три детали. Сост                                                |                                                                     |  |  |  |
| числа стандартных деталей сре                                                            | еди отобранных (ОПК-1).                                                                        |                                                                     |  |  |  |
| 3. Тестовые задания. Оценка<br>1. Задание {{ 1 }} Введение в т                           | национном билете должны присутствовать вопросторования. ОПК-1 еорию вероятностей ОПК-1         | ы, способствующих                                                   |  |  |  |
| Выбрать правильные ответы Сумма случайных событий А и                                    | r R arro                                                                                       |                                                                     |  |  |  |
| · ·                                                                                      | временном появлении А и В                                                                      |                                                                     |  |  |  |
|                                                                                          | временном пользении 77 и В<br>лении по крайней мере одного из событий А или В                  |                                                                     |  |  |  |
|                                                                                          | паемая как результат сложения событий А и В                                                    |                                                                     |  |  |  |
| -                                                                                        | лении или только А, но не В, или только В, но не А                                             | 1                                                                   |  |  |  |
| 2. Задание {{ 2 }} Введение в т                                                          |                                                                                                |                                                                     |  |  |  |
| Выбрать правильные ответы                                                                |                                                                                                |                                                                     |  |  |  |
| Произведение случайных собы                                                              | тий А и В - это                                                                                |                                                                     |  |  |  |
| ☑ событие, состоящее в одно                                                              | временном появлении A и B                                                                      |                                                                     |  |  |  |
| □ событие, состоящее в появ.                                                             | лении по крайней мере одного из событий А или В                                                |                                                                     |  |  |  |
| <ul> <li>случайная величина, получаемая как результат умножения событий A и В</li> </ul> |                                                                                                |                                                                     |  |  |  |
|                                                                                          | лении или только А, но не В, или только В, но не А                                             | Λ                                                                   |  |  |  |
| 3. Задание {{ 3 }} Введение в т                                                          | еорию вероятностей ОПК-1                                                                       |                                                                     |  |  |  |
| Выбрать правильные ответы                                                                |                                                                                                |                                                                     |  |  |  |
| P(A+B)=                                                                                  |                                                                                                |                                                                     |  |  |  |
| $\Box = P(A) + P(B)$                                                                     |                                                                                                |                                                                     |  |  |  |
|                                                                                          | $\nabla = P(A) + P(B) - P(AB)$                                                                 |                                                                     |  |  |  |
| $\Box = 1 - (1 - P(A))(1 - P(B))$ $\Box = P(A) + P(B) \cdot 2P(A \cdot B)$               |                                                                                                |                                                                     |  |  |  |
| <ul><li>□ =P(A)+P(B)-2P(AB)</li><li>4. 3adanue {{ 4 }} Bsedenue s m</li></ul>            | aanua aanaamuaamai OTV 1                                                                       |                                                                     |  |  |  |
| Выбрать правильные ответы                                                                | еорию вероятностеи ОПК-1                                                                       |                                                                     |  |  |  |
| Р(АВ)=                                                                                   |                                                                                                |                                                                     |  |  |  |
| $\Box = P(A)P(A \mid B)$                                                                 |                                                                                                |                                                                     |  |  |  |
|                                                                                          |                                                                                                |                                                                     |  |  |  |
| $\Box = P(A)P(B)$                                                                        |                                                                                                |                                                                     |  |  |  |

## 5. Задание {{ 5 }} Введение в теорию вероятностей ОПК-1

Выбрать правильные ответы

Совместная независимость трех событий: А, В и С означает следующее:

- $\square$  P(ABC)=P(A)P(B)P(C)
- $\square$  P(A | BC)=P(A)
- $\square$  P(AB)=P(A)P(B), P(BC)=P(B)P(C), P(AC)=P(A)P(C), P(ABC)=P(A)P(B)P(C)
- $\square$  P(AB)=P(A)P(B), P(BC)=P(B)P(C), P(AC)=P(A)P(C)
- $\square$  P(AB | C)=P(AB)

#### 6. Задание {{ 6 }} Введение в теорию вероятностей ОПК-1

Выбрать правильные ответы

Пусть производятся 5 независимых испытаний с вероятностью успеха, равной 1/5 в каждом испытании. Тогда вероятность того, что появится не более одного успеха, равна

$$\Box$$
  $4^5/5^5$ 

$$\triangle 4^5 / 5^5 + 5(4^4 / 5)$$

$$\Box 5(4^4/5^5)$$

$$\Box$$
 1 / 5<sup>5</sup>

#### 7. Задание {{ 7 }} Введение в теорию вероятностей ОПК-1

Выбрать правильные ответы

Пусть производятся независимые испытания с вероятностью успеха, равной 1/5 в каждом испытании. Пусть наивероятнейшее число успехов равно 10. Указать все возможные значения для числа испытаний.

- □ 50, 51, 52, 53 или 54
- ☑ 49, 50, 51, 52, 53 или 54
- □ 50
- □ 49, 50, 51, 52 или 53

#### 8. Задание {{ 10 }} Введение в теорию вероятностей ОПК-1

Выбрать правильные ответы

Пусть  $S_n$  — число успехов в n независимых испытаниях, а p — вероятность успеха в каждом испытании. Тогда для любых вещественных a < b справедливо равенство

$$\lim_{n \to \infty} P(a < (S_n - np) / \sqrt{npq} < b) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx$$

$$\lim_{n \to \infty} P(np + a\sqrt{npq} < S_n < np + b\sqrt{npq}) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx$$

$$\Box \lim_{n \to \infty} P(a < \frac{S_n}{n} - p < b) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx$$

#### 9. Задание {{ 11 }} Введение в теорию вероятностей ОПК-1

Выбрать правильные ответы

Пусть  $S_n$  — число успехов в n независимых испытаниях, а p — вероятность успеха в каждом испытании. Тогда для любых целых неотрицательных  $k_1 < k_2$  справедливо равенство

$$\square$$
  $P(k_1 \le S_n \le k_2) = \sum_{j=k_1}^{k_2} \frac{(np)^j}{j!} e^{-np} + R$ , где  $|R| \le p/n$ 

$$\square$$
  $P(k_1 \leq S_n \leq k_2) = \sum_{j=k_1}^{k_2} \frac{(np)^j}{j} e^{-np} + R$ , где  $|R| \leq np^3$ 

#### 10. Задание {{ 12 }} Введение в теорию вероятностей ОПК-1

Выбрать правильные ответы

Пусть  $S_n$  — число успехов в n независимых испытаниях, а p — вероятность успеха в каждом испытании. Тогда для любых целых неотрицательных  $k_1 < k_2$  справедливо равенство

#### 11. Задание {{ 13 }} Случайные величины ОПК-1

Выбрать правильные ответы

Пусть X и Y- две случайные величины, причем распределение Y совпадает с распределением случайной

величины 
$$\frac{aX+b}{c}$$
, где  $a,b,c$  – константы. Тогда

$$\square M(Y) = \frac{aM(X) + b}{c}, \quad D(Y) = \frac{a^2D(X)}{C}$$

$$\Box M(Y) = \frac{aM(X) + b}{c}, \quad D(Y) = \frac{a^2D(X) + b^2}{c^2}$$

$$\square M(Y) = \frac{aM(X)}{c}, \quad D(Y) = \frac{a^2D(X)}{c^2}$$

#### 12. Задание {{ 14 }} Случайные величины ОПК-1

Выбрать правильные ответы

Случайная величина Х имеет распределение Пуассона с параметром 1, если

$$P(X = k) = e^{-k}/k!, k = 0,1,2,...$$

$$\square$$
  $P(X = k) = e^{-1/k!}, k = 0,1,2,...,n$ 

$$P(X = k) = \frac{1}{k!}e^{-1}, \quad k = 0, 1, 2, ...$$

$$\square$$
  $P(X = k) = \frac{1}{k!}e^{-1}, k = 1, 2, ...$ 

## 13. Задание {{ 15 }} Случайные величины ОПК-1

Выбрать правильные ответы Распределение Пуассона

| $\overline{V}$ | пискретио |
|----------------|-----------|
| v              | дискретно |

- □ сингулярно
- □ абсолютно непрерывно
- □ непрерывно

## 14. Задание {{ 16 }} Случайные величины ОПК-1

Выбрать правильные ответы

Показательное распределение

- □ сингулярно
- ☑ абсолютно непрерывно

#### **15.** Задание {{ 57 }} Случайные величины ОПК-1

Пусть X - число успехов в 5 независимых испытаниях, а 1/2 - вероятность успеха в каждом испытании. Соответствие между вероятностями указанных событий и числовыми ответами:

$$P(X=1)$$

$$P(X < 1) \qquad \qquad \frac{1}{2^5}$$

$$P(X=2)$$

#### **16.** Задание {{ 58 }} Случайные величины ОПК-1

Пусть Х - число успехов в 4 независимых испытаниях, а 1/3 - вероятность успеха в каждом испытании.

Соответствие между вероятностями указанных событий и числовыми ответами:

$$P(X = 1)$$
  $\frac{32}{3^4}$   $P(X < 1)$   $\frac{16}{3^4}$   $\frac{8}{3^3}$ 

#### 17. Задание {{ 59 }} Случайные величины ОПК-1

Соответствие между названиями распределений дискретной случайной величины X и формулами, по которым вычисляются вероятности:

Гипергеометрическое распределение

$$P(X = k) = \frac{C_K^k C_{N-K}^{n-k}}{C_N^n}, \quad k=0,1,2, ...,n$$

Геометрическое распределение

$$P(X = k) = p^{k}q$$
,  $k=0,1,2,...$ 

Биномиальное распределение

$$P(X = k) = C_n^k p^k q^{n-k}, \quad k=0,1,2,...,n$$

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k=0,1,2,...$$

#### **18.** Задание {{ 60 }} Случайные величины ОПК-1

Соответствие между названиями абсолютно непрерывных распределений и функциями плотности:

Показательное распределение

$$\lambda e^{-\lambda x}$$
.

Равномерное распределение

$$\frac{1}{b-a}$$
,  $a \le x \le b$ 

Стандартное нормальное распределение

$$\frac{1}{\sqrt{2\pi}}e^{-x^2/2}, \qquad -\infty < x < \infty$$

$$\frac{1}{\pi(1+x^2)}, \quad -\infty < x < \infty$$

#### 19. Задание {{ 61 }} Случайные величины ОПК-1

Соответствие между названиями абсолютно непрерывных распределений и функциями распределения:

Показательное распределение

$$1-e^{-\lambda x}$$
,  $x>0$ 

Распределение Коши

$$\frac{1}{\pi} \arctan x + \frac{1}{2}, \qquad -\infty < x < \infty$$

Стандартное нормальное распределение

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt , \qquad -\infty < x < \infty$$

$$\frac{x-a}{b-a}, \qquad a \le x \le b$$

## 20. Задание {{ 62 }} Математическая статистика ОПК-1

Вставить пропущенные слова

Правильные варианты ответа: выборочной дисперсией;

#### **21.** Задание {{ 63 }} Случайные величины ОПК-1

Вставить пропущенное слово

Среднее квадратическое отклонение – это корень квадратный из \_\_\_\_\_

Правильные варианты ответа: дисперсии;

## **22.** Задание {{ 64 }} Случайные величины ОПК-1

Вставить пропущенные слова

Если функция плотности существует, то она равна производной от \_\_\_\_\_

Правильные варианты ответа: функции распределения;

#### 23. Задание {{ 65 }} Случайные величины ОПК-1

Вставить пропущенное число

Пусть Y – стандартная нормальная случайная величина. Тогда P(Y < 0) = \_\_\_\_\_\_ .

Правильные варианты ответа: 0.5; 0,5; 1/2;

#### **24.** Задание {{ 66 }} Случайные величины ОПК-1

Вставить пропущенное число

Пусть X – случайная величина, распределенная равномерно на отрезке [0,1]. Тогда P(X>3/4)= \_\_\_\_\_ .

Правильные варианты ответа: 1/4; 0.25; 0,25;

#### 25. Задание {{ 45 }} Случайные величины ОПК-1

Вставить пропущенное слово

Неравенство 
$$P(|X-MX| \ge \varepsilon) \le \frac{DX}{\varepsilon^2}$$
 называется неравенством \_\_\_\_\_\_.

Правильные варианты ответа: Чебышева; Чебышёва;

## 26. Задание {{ 46 }} Введение в теорию вероятностей ОПК-1

Вставить пропущенное слово

Если событие A \_\_\_\_\_ событию B, то P(A)=1-P(B)

Правильные варианты ответа: противоположно; противоположное;

## 27. Задание {{ 49 }} Введение в теорию вероятностей ОПК-1

Вставить пропущенное слово

| Если события $A$ и $B$ ,                                                                                                                                              | TO $P(A+B)=1-(1-P(A))(1-P(B))$                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Правильные варианты ответа: незави                                                                                                                                    | нсимы; независимые;                                                           |
| 28. Задание {{ 50 }} Случайные величи                                                                                                                                 | ины ОПК-1                                                                     |
| Вставить пропущенные слова                                                                                                                                            |                                                                               |
| При условии существования дисперси                                                                                                                                    | й из центральной предельной теоремы следует чисел.                            |
| Правильные варианты ответа: закон                                                                                                                                     | больших;                                                                      |
| 29. Задание {{ 51 }} Случайные величи                                                                                                                                 | ины ОПК-1                                                                     |
| Вставить пропущенное слово                                                                                                                                            |                                                                               |
| Интегральная теорема Муавра-Лаплас                                                                                                                                    | а является частным случаем предельной теоремы .                               |
| Правильные варианты ответа: центра                                                                                                                                    | альной;                                                                       |
| 30. Задание {{ 52 }} Введение в теория                                                                                                                                | о вероятностей ОПК-1                                                          |
| Вставить пропущенное слово                                                                                                                                            |                                                                               |
| Пусть $S_n$ — число успехов в $n$ независ                                                                                                                             | имых испытаниях, а $p-$ вероятность успеха в каждом испытании. Тогда          |
| число успехов $\overline{k}$ уд                                                                                                                                       | овлетворяет неравенству $np + p - 1 \le \overline{k} \le np + p$              |
| Правильные варианты ответа: наивер 31. Задание $\{\{53\}\}$ Случайные величи Вставить пропущенное слово Пусть $X$ и $Y$ — независимые абсолютноесть исходных плотност | ины ОПК-1 непрерывные случайные величины. Тогда плотность распределения $X+Y$ |
| Правильные варианты ответа: свертн                                                                                                                                    |                                                                               |
| 32. Задание {{ 55 }} Введение в теория                                                                                                                                |                                                                               |
| Соответствие между вероятностями сливычисляются:                                                                                                                      | учайных событий и формулами, по которым эти вероятности                       |
| P(A+B)                                                                                                                                                                | P(A)+P(B)-P(AB)                                                               |
| P(AB)                                                                                                                                                                 | $P(A) \ P(B A)$                                                               |
|                                                                                                                                                                       | P(A) P(B)                                                                     |
|                                                                                                                                                                       | P(A)+P(B)                                                                     |
| 33. Задание {{ 31 }} Введение в теория Вставить пропущенное слово                                                                                                     | о вероятностей ОПК-1                                                          |
| п С                                                                                                                                                                   | T                                                                             |

Пусть  $S_n$  — число успехов в n независимых испытаниях, а p — вероятность успеха в каждом испытании. Тогда для любых целых неотрицательных  $k_1 < k_2$  справедливо приближенное равенство

$$P(k_1 \le S_n \le k_2) \approx \sum_{j=k_1}^{k_2} \frac{(np)^j}{j!} e^{-np},$$

Это следствие из предельной теоремы \_\_\_\_\_\_.

Правильные варианты ответа: Пуассона;

## 34. Задание {{ 32 }} Введение в теорию вероятностей ОПК-1

Вставить пропущенное слово

Пусть  $S_n$  — число успехов в n независимых испытаниях, а p — вероятность успеха в каждом испытании. Тогда для любых целых неотрицательных  $k_1 < k_2$  справедливо равенство



Это следствие формулы \_\_\_\_\_

Правильные варианты ответа: Бернулли;

#### 35. Задание {{ 33 }} Случайные величины ОПК-1

Вставить пропущенное слово

Пусть X и Y- две случайные величины, причем распределение Y совпадает с распределением случайной

величины  $\frac{aX+b}{c}$ , где a,b,c — константы. Тогда

$$M(Y) = \frac{aM(X) + b}{c}$$
. Это равенство следует из свойств \_\_\_\_\_\_ ожидания.

Правильные варианты ответа: математического;

#### 36. Задание {{ 34 }} Случайные величины ОПК-1

Вставить пропущенное слово

Вставить пропущенное слово

Пусть X и Y- две случайные величины, причем распределение Y совпадает с распределением случайной

величины  $\frac{aX+b}{c}$ , где a,b,c – константы. Тогда

$$D(Y) = \frac{a^2 D(X)}{c^2}.$$

Это равенство следует из свойств .

Правильные варианты ответа: дисперсии;

#### 37. Задание {{ 35 }} Случайные величины ОПК-1

Вставить пропущенное слово

Случайная величина Х имеет распределение \_\_\_\_\_ с параметром 1, если

$$P(X = k) = \frac{1}{k!}e^{-1}, \quad k = 0, 1, 2, ...$$

Правильные варианты ответа: Пуассона;

#### 38. Задание {{ 36 }} Случайные величины ОПК-1

Вставить пропущенное слово

Случайная величина, имеющая распределение Пуассона, принимает \_\_\_\_\_ число значений

Правильные варианты ответа: счетное; бесконечное;

## **39. Задание {{ 37 }} Случайные величины** ОПК-1

Вставить пропущенное слово

Случайная величина имеет \_\_\_\_\_\_ распределение с параметром 2, если ее функция плотности равна  $2e^{-2x}$ , когда x>0.

Правильные варианты ответа: показательное; экспоненциальное;

## 40. Задание {{ 38 }} Случайные величины ОПК-1

Вставить пропущенное слово

Правильные варианты ответа: больших чисел;

#### **47. Задание {{ 17 }} Случайные величины** ОПК-1

математического ожидания превышает любое наперед заданное число.

Выбрать правильные ответы

Случайная величина Z имеет нормальное распределение с параметрами  $\mu$  и  $\sigma^2$ , если

$$\Box Z = \frac{X - \mu}{\sigma}$$

$$riangle$$
 ее функция плотности равна  $\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right]$ 

$$riangle$$
 ее функция распределения равна  $\frac{1}{\sigma\sqrt{2\pi}}\int\limits_{-\infty}^{x}\exp\left[-\frac{(t-\mu)^2}{2\sigma^2}\right]dt$ 

$$\square$$
 ее функция плотности равна  $\frac{1}{\sqrt{2\pi}} \exp \left[ -\frac{(x-\mu)^2}{2\sigma^2} \right]$ 

$$extstyle ext{ ее функция распределения равна } rac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\frac{x-\mu}{\sigma}}e^{-t^2/2}dt$$

$$\square$$
 ее функция распределения равна  $\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{x}e^{-t^2/2}dt$ 

## **48. Задание** *{{ 19 }}* случайные величины ОПК-1

Выбрать правильные ответы

Случайная величина X имеет распределение Стьюдента с 3 степенями свободы, если

$$\square$$
  $X = \frac{Y_1}{\sqrt{Y_2^2 + Y_3^2 + Y_4^2}}$ , где  $Y_j$  - независимые стандартные нормальные случайные величины

#### 49. Задание {{ 20 }} Случайные величины ОПК-1

#### Выбрать правильные ответы

Коэффициент корреляции случайных величин X и Y равен

$$\Box \frac{M(X-MX)(Y-MY)}{DXDY}$$

$$\Box \quad \frac{MXY}{\sqrt{DX\,DY}}$$

$$\boxed{ } \frac{MXY - MXMY}{\sqrt{DXDY}}$$

### **50.** Задание {{ 21 }} Случайные величины ОПК-1

Выбрать правильные ответы

Ковариация случайных величин X и Y равна

$$\square$$
  $MXY$ 

$$\Box$$
  $D(X-MX)(Y-MY)$ 

$$\square$$
  $M(X-MX)(Y-MY)$ 

$$MXY - MX MY$$

#### 51. Задание {{ 22 }} Случайные величины ОПК-1

Выбрать правильные ответы

Пусть случайные величины X, Y и случайный вектор (X,Y) имеют плотности  $f_1(x)$ ,  $f_2(x)$  и f(x,y) соответственно. Условным математическим ожиданием случайной величины Y относительно случайной величины X называется

$$\square$$
  $\frac{1}{f_1(X)} \int_{-\infty}^{\infty} f(X, y) dy$  при  $f_1(X) \neq 0$ 

$$extstyle$$
 случайная величина  $\frac{1}{f_1(X)}\int\limits_{-\infty}^{\infty}yf(X,y)dy$  при  $f_1(X)\neq 0$ 

$$\square$$
 функция  $\frac{1}{f_1(x)} \int_{-\infty}^{\infty} y f(x, y) dy$  при  $f_1(x) \neq 0$ 

#### 52. Задание {{ 23 }} Введение в теорию вероятностей ОПК-1

Вставить пропущенные слова

Сумма случайных событий A и B – это \_\_\_\_\_\_ , состоящее в появлении по крайней мере одного из событий A или B

Правильные варианты ответа: случайное событие;

#### 53. Задание {{ 24 }} Введение в теорию вероятностей ОПК-1

Вставить пропущенные слова

| Произведение случайных событий $A$ и $B$ – это, состоящее в одновременном появлении $A$ и $B$                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Правильные варианты ответа: случайное событие; 54. Задание {{ 25 }} Введение в теорию вероятностей ОПК-1 Вставить пропущенный символ $P(A+B)$ $P(A)+P(B)-P(AB)$                                                                                                                                                                                                                                                       |
| Правильные варианты ответа: =;<br>55. Задание {{ 26 }} Введение в теорию вероятностей ОПК-1                                                                                                                                                                                                                                                                                                                           |
| Вставить пропущенное слово События $A$ и $B$ называются, если событие $AB$ невозможно                                                                                                                                                                                                                                                                                                                                 |
| Правильные варианты ответа: несовместными; 56. Задание {{ 27 }} Введение в теорию вероятностей ОПК-1 Вставить пропущенное слово События $A$ и $B$ называются, если $P(AB) = P(A)P(B)$                                                                                                                                                                                                                                 |
| Правильные варианты ответа: независимыми;<br>57. Задание {{ 28 }} Введение в теорию вероятностей ОПК-1                                                                                                                                                                                                                                                                                                                |
| Вставить пропущенное слово Событий $A$ , $B$ и $C$ называются, если $P(AB)=P(A)P(B)$ , $P(BC)=P(B)P(C)$ , $P(AC)=P(A)P(C)$ , $P(ABC)=P(A)P(B)P(C)$                                                                                                                                                                                                                                                                    |
| Правильные варианты ответа: независимыми; 58. Задание {{ 29 }} Введение в теорию вероятностей ОПК-1 Вставить пропущенное число Проведены 54 независимых испытания с вероятностью успеха, равной 1/5 в каждом испытании. Тогда наивероятнейшее число успехов равно                                                                                                                                                     |
| Правильные варианты ответа: 10; <b>59.</b> Задание $\{\{30\}\}$ Введение в теорию вероятностей ОПК-1 Вставить пропущенное слово Пусть $S_n$ — число успехов в $n$ независимых испытаниях, а $p$ — вероятность успеха в каждом испытании. Тогда для любых вещественных $a < b$ справедливо равенство                                                                                                                   |
| $\lim_{n \to \infty} P(a < (S_n - np) / \sqrt{npq} < b) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx$                                                                                                                                                                                                                                                                                                               |
| Это формулировка теоремы Муавра–Лапласа .                                                                                                                                                                                                                                                                                                                                                                             |
| Правильные варианты ответа: интегральной;<br><b>60.</b> Задание {{ 67 }} Случайные величины ОПК-1<br>Пусть S - число успехов в п независимых испытаниях, а р - вероятность успеха в каждом испытании.<br>Соответствие между приближенными равенствами и названиями утверждений, из которых они следуют:<br>Предельная теорема Пуассона<br>$P(k_1 \le S \le k_2) \approx \sum_{j=k_1}^{k_2} \frac{(np)^j}{j!} e^{-np}$ |
| $P(k_1 \leq S \leq k_2) pprox rac{1}{\sqrt{2\pi}} \int\limits_a^b e^{-x^2/2} \!\!dx$ , Интегральная теорема Муавра-Лапласа                                                                                                                                                                                                                                                                                           |

где 
$$a = \frac{k_1 - np}{\sqrt{npq}}, b = \frac{k_2 - np}{\sqrt{npq}}$$
  $P(k_1 \le S \le k_2) = \sum_{j=k_1}^{k_2} C_n^j p^j \left(1 - p\right)^{n-j}$  Формула Бернулли

Формула полной вероятности

#### 61. Задание {{ 68 }} Случайные величины ОПК-1

Выбрать правильные ответы

Случайная величина Х имеет распределение хи-квадрат с 3 степенями свободы, если

$$\Box$$
 функция плотности равна  $(1/\sqrt{2\pi})x^{\frac{3}{e}^{-x/2}}, \quad x>0.$ 

$$extstyle функция плотности равна  $\qquad \frac{1}{2^{3/2} \Gamma(3/2)} x^{1/2} e^{-x/2} \,, \qquad x > 0$$$

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Соответствие между бальной и рейтинговой системами оценивания знаний, умений, навыков и (или) опыта деятельности, устанавливается посредством следующей таблицы:

| Объект<br>оценки | Показатели оценивания результатов обучения | Оценка                | Уровень<br>результатов<br>обучения |
|------------------|--------------------------------------------|-----------------------|------------------------------------|
|                  | 60 баллов и менее                          | «Неудовлетворительно» | Низкий уровень                     |
| Обучающийся      | 74 – 61 баллов                             | «Удовлетворительно»   | Пороговый уровень                  |
|                  | 84 – 77 баллов                             | «Хорошо»              | Повышенный уровень                 |
|                  | 100 – 85 баллов                            | «Отлично»             | Высокий уровень                    |

<sup>4.</sup> Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета, курсового проектирования.

Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета

|                                                                                                                              | Содержание шкалы оценивания            |                                            |                                        |                                                  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|----------------------------------------|--------------------------------------------------|
| Элементы оценивания                                                                                                          | Неудовлетворительно                    | Удовлетворительно                          | Хорошо                                 | Отлично                                          |
|                                                                                                                              | Не зачтено                             | Зачтено                                    | Зачтено                                | Зачтено                                          |
| Соответствие ответов формулировкам вопросов (заданий)                                                                        | Полное несоответствие по всем вопросам | Значительные<br>погрешности                | Незначительные<br>погрешности          | Полное<br>соответствие                           |
| Структура,<br>последовательность и<br>логика ответа. Умение<br>четко, понятно, грамотно<br>и свободно излагать<br>свои мысли |                                        | Значительное<br>несоответствие<br>критерию | Незначительное несоответствие критерию | Соответствие критерию при ответе на все вопросы. |

| Знание нормативных,<br>правовых документов и<br>специальной литературы             | Полное незнание<br>нормативной и<br>правовой базы и<br>специальной<br>литературы | Имеют место существенные упущения (незнание большей части из документов и специальной литературы по названию, содержанию и т.д.). | Имеют место несущественные упущения и незнание отдельных (единичных) работ из числа обязательной литературы. | Полное<br>соответствие<br>данному критерию<br>ответов на все<br>вопросы.                                       |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Умение увязывать теорию с практикой, в том числе в области профессиональной работы | Умение связать теорию с практикой работы не проявляется.                         | Умение связать<br>вопросы теории и<br>практики проявляется<br>редко                                                               | Умение связать вопросы теории и практики в основном проявляется.                                             | Полное соответствие данному критерию. Способность интегрировать знания и привлекать сведения из различных сфер |

|  | На все дополнительные | Ответы на большую  | 1. Даны неполные  | Даны верные    |
|--|-----------------------|--------------------|-------------------|----------------|
|  | вопросы преподавателя | часть              | ответы на         | ответы на все  |
|  | даны неверные ответы. | дополнительных     | дополнительные    | дополнительные |
|  |                       | вопросов           | вопросы           | вопросы        |
|  |                       | преподавателя даны | преподавателя.    | преподавателя. |
|  |                       | неверно.           | 2. Дан один       |                |
|  |                       |                    | неверный ответ на |                |
|  |                       |                    | дополнительные    |                |
|  |                       |                    | вопросы           |                |
|  |                       |                    | преподавателя.    |                |
|  |                       |                    |                   |                |
|  |                       |                    |                   |                |
|  |                       |                    |                   |                |

Примечание: итоговая оценка формируется как средняя арифметическая результатов элементов оценивания.